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Abstract

A self-adjoint formulation of the energy transport model of semiconductor devices is proposed. This new formu-

lation leads to symmetric and monotonic properties of the resulting system of nonlinear algebraic equations from an

adaptive finite element approximation of the model. A node-by-node iterative method is then presented for solving the

system. This is a globally convergent method that does not require the assembly of the global matrix system and full

Jacobian matrices. An adaptive algorithm implementing this method is described in detail to illustrate the main features

of this paper, namely, adaptation, node-by-node calculation, and global convergence. Numerical results of simulations

on deep-submicron diode and MOSFET device structures are given to demonstrate the accuracy and efficiency of the

algorithm.

� 2003 Elsevier Science B.V. All rights reserved.
1. Introduction

Computer-aided simulation is one of the important processes in developing semiconductor devices.

Numerical methods for the fundamental semiconductor equations play a significant role in this develop-

ment. For most practical device structures, the electrostatic potential, carrier concentrations, and carrier

temperatures exhibit extreme layers or peaks, particularly in the neighborhood of p–n junctions and the

oxide [7,24]. Presence of this kind of singular phenomena implies that adaptive mesh generation of un-

structured grids is inevitable if an accurate and efficient device simulation platform is required.

To obtain numerical solutions of semiconductor equations, one must solve a system of nonlinear al-

gebraic equations resulting from a discretization by, for example, the finite element method (FEM). The
standard method for the solution is Newton�s method or its variant. Newton�s method is a local method

that converges quadratically in a sufficiently small neighborhood of the exact solution. Although Newton�s
method has been dominantly used in device simulations [4,36], it is very sensitive to initial guesses due to its
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local convergence property. In practical simulation, the device terminal characteristics of I–V curves (i.e.,

I–V points) is usually of interest. A conventional approach to obtain these curves is by the continuation

method from lower to higher biases by Newton�s method, which can be very costly in terms of computing

time and human work load associated with the convergence problems of the method.

We propose here a global iterative method for the energy transport model for which a new self-adjoint

formulation of carrier energy balance equations is introduced. This formulation is purely mathematical

rather than physical and is motivated by the transformation of carrier densities to the Slotboom variables.

It leads to symmetric and monotonic properties of the resulting system of nonlinear algebraic equations
from FE approximation. These properties provide several advantageous features for device simulation.

First of all, the iterative method is globally and monotonically convergent with simple upper or lower

solutions of the self-adjoint semilinear PDEs as initial guesses. This allows us to have a simultaneous

(parallel) computing of multiple I–V points with various biasing conditions and with independent constant

initial guesses for each I–V point calculation. The computational effort can thus be dramatically reduced

[20]. Secondly, the solution procedure can be performed in a node-by-node manner that does not require

the assembly of the global matrix system and full Jacobian matrices. Third, the method does not produce

non-physical negative values for the minority carrier concentration under heavy recombination [32,36] since
the stiffness matrices are diagonally dominant. Finally, its implementation is considerably simpler than that

of Newton�s method since it essentially depends only on one crucial component, i.e., the monotone pa-

rameter matrix which is a simplified diagonal Jacobian. An adaptive algorithm implementing this method is

also described in detail to illustrate the main features of this paper, namely, adaptation, node-by-node

calculation, and global convergence. The algorithm is based on the general framework proposed in [21] and

on the object-oriented programming (OOP) prototype developed in [22].

This paper is organized as follows. The energy transport model considered herein is stated in Section

2. In Section 3, we introduce the self-adjoint formulation of carrier energy balance equations. In Section
4, we first analyze the structure of the stiffness matrix of adaptive finite element systems for the Laplace

equation that leads to diagonal dominance feature of the resulting matrices of the model problem.

Starting with the upper and lower solutions as initial guesses, it is also shown in this section that the

iterative method for the solution of the nonlinear algebraic systems is globally convergent. We then

summarize in Section 6 our implementation of a complete solution process into the adaptive algorithm

which consists mainly of 1-irregular mesh refinement, Gummel�s decoupling scheme, the iterative

method, and error estimation. Section 7 represents a part of our extensive numerical experiments on

various deep-submicron diode and MOSFET device structures to demonstrate the accuracy and effi-
ciency of the algorithm.
2. The energy transport model

A variety of energy transport models have been developed in the literature [36]. In particular, we use the

following model which is also considered in [1,2,9,12,13,19]:

D/ ¼ q
es
ðn� p þ N�

A � Nþ
D Þ; ð1Þ
1

q
r � Jn ¼ R; ð2Þ
1

q
r � Jp ¼ �R; ð3Þ
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r � Sn ¼ Jn � E� n
xn � x0

snx

� �
; ð4Þ
r � Sp ¼ Jp � E� p
xp � x0

spx

� �
; ð5Þ

where / is the electrostatic potential, n and p are the electron and hole concentrations, q is the elementary
charge, es is the permittivity constant of semiconductor, N�

A and Nþ
D are the densities of ionized impurities,

Jn and Jp are the current densities, R is the function describing the balance of generation and recombination

of electrons and holes, Sn and Sp are the energy fluxes for carriers, E is the electric field, snx and spx are the

carrier energy relaxation times, x0 is the thermal energy, and xn and xp are the carrier average energies.

These physical variables are tightly coupled together with the following auxiliary relationships

E ¼ �r/; ð6Þ
Jn ¼ �qlnnr/ þ qDnrn ¼ �qnvn; ð7Þ
Jp ¼ �qlppr/ � qDprp ¼ qpvp; ð8Þ
Sn ¼
Jn

�q
xn þ

Jn

�q
kBTn þQn; ð9Þ
Sp ¼
Jp

þq
xp þ

Jp

þq
kBTp þQp; ð10Þ
x0 ¼ 3
2
kBTL; ð11Þ
xn ¼ 3
2
kBTn þ 1

2
m�

n vnj j2; ð12Þ
xp ¼ 3
2
kBTp þ 1

2
m�

p vp
�� ��2; ð13Þ
Qn ¼ �jnrTn; ð14Þ
Qp ¼ �jprTp; ð15Þ
jn ¼ 2
kB
q

� �2

nqlnTL; ð16Þ
jp ¼ 2
kB
q

� �2

pqlpTL; ð17Þ
R ¼ np � n2i
s0nðp þ pTÞ þ s0pðnþ nTÞ

; ð18Þ
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hereQn andQp are the heat fluxes for carries, kB is Boltzmann�s constant, Tn, Tp, and TL are the electron, hole,

and lattice temperatures, ln and lp are the field-dependent electron and hole mobilities, Dn and Dp are the

electron and hole diffusion coefficients expressed by the Einstein relation with themobilities,m�
n andm�

p are the

electron and hole effective masses, vn and vp are the electron and hole velocities, jn and jp are the electron and

hole heat conductivities, and (18) is the Shockley–Read–Hall generation–recombination model with ni being
the intrinsic carrier concentration, s0n and s0p the electron and hole lifetimes, and pT and nT the electron and hole
densities associated with energy levels of the traps. In the above equations, vectors are denoted by bold letters.

Based on Boltzmann statistics [16,35], the convectional drift–diffusion (DD) model (1)–(3) can be written
as

D/ ¼ F ð/; u; vÞ; ð19Þ
r � Dnni exp
/
VT

� �
ru

� �
¼ Rð/; u; vÞ; ð20Þ
r � Dpni exp
�/
VT

� �
rv

� �
¼ Rð/; u; vÞ; ð21Þ

where VT ¼ ðkBTLÞ=q is the thermal voltage,

u ¼ exp
�un

VT

� �
; ð22Þ
v ¼ exp
up

VT

� �
; ð23Þ

are the Slotboom variables in which the quasi-Fermi potentials un and up are expressed as

n ¼ ni exp
/ � un

VT

� �
; ð24Þ
p ¼ ni exp
up � /

VT

� �
; ð25Þ
Jn ¼ qDnni exp
/
VT

� �
ru ¼ �qnlnrun; ð26Þ
Jp ¼ �qDpni exp
�/
VT

� �
rv ¼ �qplprup; ð27Þ

and

F ð/; u; vÞ ¼ qni
es

u exp
/
VT

� ��
� v exp

�/
VT

� ��
þ

q N�
A � Nþ

D

� �
es

; ð28Þ
Rð/; u; vÞ ¼ n2i ðuv� 1Þ
s0n niv expð�/=VTÞ þ pTð Þ þ s0p niu expð/=VTÞ þ nTð Þ : ð29Þ
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The system (19)–(21) is subject to some appropriate conditions on the boundary of a bounded domain

denoted by X 
 R2. The boundary oX ¼ oXD [ oXN is piecewise smooth consisting of Dirichlet oXD and

Neumann oXN parts. The Dirichlet part corresponds to the ohmic contacts on the device. By assuming the

charge neutrality condition and the mass-action law [37], the Dirichlet boundary conditions of the model in

terms of the variables /, u, and v are described as follows:

/ ¼ VO þ Vb; ð30Þ
u ¼ exp
�VO
VT

� �
; ð31Þ
v ¼ exp
VO
VT

� �
; ð32Þ
Tn ¼ Tp ¼ 300; ð33Þ

where VO denotes the applied voltage and Vb represents the built-in potential [37]. The Neumann part

corresponds to the artificial boundary conditions o/=on ¼ ou=on ¼ ov=on ¼ oTn=on ¼ oTp=on ¼ 0 for the

state variables.

Several remarks on the model are in order.

Remark 2.1. The carrier current densities (7) and (8) are derived from those of the standard hydrodynamic

model, namely, from

Jn �
spn
q
ðr � JnÞ

Jn

n
¼ qln

kBTn

q
rn

�
þ nr kBTn

q

�
� /

��

(and a similar equation for the hole) by neglecting the second (convective) term of this equation and by

assuming the electron to be in thermal equilibrium with the lattice, i.e., Tn ¼ Tp ¼ TL [12,19,23,31]. The same

assumption is also used for the heat conductivities from which (16) and (17) are thus implied by the Wi-

edemann–Franz law [18].

Remark 2.2. In our numerical simulations, the kinetic energy in the carrier average energies (12) and (13)

is neglected. Nevertheless, it does not affect the self-adjoint transformation as shown in the following

section.

Remark 2.3. Following the Caughey–Thomas expression [8,33], we use the field-dependent mobility model

ln;p ¼
l0
n;p

1þ ðl0
n;p Ej j=vsatn;pÞ

bn;p

� 	1=bn;p
;

where l0
n ¼ 1500 cm2 V�1 s�1 and l0

p ¼ 600 cm2 V�1 s�1 [33,37] are lattice mobility constants, vsatn ¼
1:1� 107 and vsatp ¼ 9:5� 106 [8,33] are saturated velocities, and bn ¼ 2 and bp ¼ 1. Typically, the electron
mobility varies between 50 and 1500 cm2 V�1 s�1 while the hole mobility varies between 50 and

600 cm2 V�1 s�1 for silicon at room temperature. Moreover, the linear proportionality of the electric field

strength and the magnitudes of the drift velocities only holds at relatively low electric fields. The drift

velocities saturate at high electric fields due to carrier heating. This effect must be accounted for by field-

dependent mobilities if high field effects are to be analyzed.
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3. A self-adjoint formulation for carrier temperatures

In order to have a self-adjoint expression of (4) and (5), we rewrite (9) and (10) more precisely as

Sn ¼
5Jn

�2q kBTn � jnrTn þ
Jn

�q
1

2
m�

njvnj
2

� �
; ð34Þ
Sp ¼
5Jp

þ2q kBTp � jprTp þ
Jp

þq
1

2
m�

pjvpj
2

� �
: ð35Þ

Introduce new variables gn and gp for carrier temperatures Tn ¼ gn expðcunÞ and Tp ¼ gp expð�cupÞ
where c is a constant to be determined. With these two variables, Eqs. (34) and (35) are reformulated as

Sn ¼
5Jn

�2q kBgn expðcunÞ � jn expðcunÞrgn½ þ cgn expðcunÞrun� þ
Jn

�q
1

2
m�

n vnj j2
� �

; ð36Þ
Sp ¼
5Jp

þ2q kBgp expð�cupÞ � jp expð



� cupÞrgp � cgp expð � cupÞrup

�
þ Jp

þq
1

2
m�

p vp
�� ��2� �

: ð37Þ

An instrumental choice of the unknown constant c is to eliminate the gradient of the quasi-Fermi po-

tentials leading to a divergence formulation for the new state variables. We thus solve the following two

equations for c:

5Jn

�2q kBgn expðcunÞ � jncgn expðcunÞrun ¼ 0; ð38Þ
5Jp

þ2q kBgp expð�cupÞ þ jpcgp expð�cupÞru ¼ 0: ð39Þ

Substituting (26) and (27) into (38) and (39), we have

5

2
nlnkB ¼ cjn ¼ 2cTL

kB
q

� �2

nqln; ð40Þ
5

2
plpkB ¼ cjp ¼ 2cTL

kB
q

� �2

pqlp; ð41Þ

which yield c ¼ 5q=4kBTL ¼ 5=4VT. The new state variables gn and gp can therefore be defined as

Tn ¼ gn exp
5un

4VT

� �
; ð42Þ
Tp ¼ gp exp

�
�
5up

4VT

�
: ð43Þ

Note that these two expressions are purely mathematical and very similar to that of the Slotboom

variables (22) and (23). It is unknown to us whether these formulas have been developed in the literature or
have any significant and interesting physical relationships between the quasi-Fermi potentials and carrier

temperatures. Nevertheless, as shown below, they provide an intriguing alternative to the energy transport
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model in terms of mathematical properties, especially from the computational viewpoint. The energy fluxes

(9) and (10) are then reduced to

Sn ¼ �jn exp
5un

4VT

� �
rgn þ

Jn

�q
1

2
m�

n vnj j2
� �

; ð44Þ
Sp ¼ �jp exp

�
�
5up

4VT

�
rgp þ

Jp

þq
1

2
m�

p vp
�� ��2� �

: ð45Þ

Substituting vn and vp for Jn and Jp in (22) and (23), we obtain the following self-adjoint system in terms

of the new variables

r � jn exp
5un

4VT

� �
rgn

� �
¼ RnðgnÞ; ð46Þ
r � jp exp

��
�
5up

4VT

�
rgp

�
¼ RpðgpÞ; ð47Þ

where

RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E� 1

q
r � 1

2
m�

n

Jnj j2

q2n2
Jn

 !
; ð48Þ
RpðgpÞ ¼ p
xp � x0

spx

� �
� Jp � Eþ 1

q
r � 1

2
m�

p

Jp

�� ��2
q2n2

Jp

 !
: ð49Þ

The boundary conditions are changed accordingly to

gn ¼
300

expð5VO=4VTÞ
and gp ¼

300

expð�5VO=4VTÞ
on oXD; ð50Þ
ogn

on
¼ ogp

on
¼ 0 on oXN: ð51Þ
Remark 3.1. It should be noted that effective approximation of the gradient of current densities in formulas

(48) and (49) is in general very difficult to acquire. Simplified models for these formulas based on physical

consideration are possible. For example, by assuming that the drift energy is only a small part of the total

kinetic energy [9], (48) and (49) can be reduced to

RnðgnÞ ¼ n
xn � x0

snx

� �
� Jn � E;
RpðgpÞ ¼ p
xp � x0

spx

� �
� Jp � E;

which will be used in our numerical simulations.
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4. Finite element approximation

Let T be a finite element partition of the domain X of Laplace�s equation Du ¼ 0 with Dirichlet and

Neumann boundary conditions such that T ¼ fsj; j ¼ 1; . . . ;M ; �XX ¼ [M
j¼1�ssjg and ShðTÞ denote a finite

element subspace onT for the Laplace problem. The FE approximation of the problem in ShðTÞ is then to
find uh 2 ShðTÞ such that

Bhðuh; vhÞ ¼ 0 8vh 2 ShðTÞ;

with

Bhðuh; vhÞ �
X
s2T

Z
s
ruh � rvh dxdy:

We consider particularly that the partition T is generated by the 1-irregular mesh refinement scheme

[11,22]. Let N a be a set of N indices that are assigned to active degrees of freedom (i.e., regular nodes) and

N c assigned to constrained degrees of freedom (irregular nodes). By an active degree of freedom, we mean

one that defines a parameter associated with the global stiffness matrix whereas a constrained degree of

freedom is a linear combination of active degrees of freedom that are associated with the constrained node

by element connectivity. For each i 2 N c, there exists a set AðiÞ 
 N a of corresponding active degrees of
freedom such that the resulting finite element space ShðTÞ consists of continuous functions. If rectangular
elements are used, then uh is of the following form [11,22]:

uh ¼
X
i2Na

uib̂bi þ
X
j2N c

ujb̂bj ¼
X
i2Na

uib̂bi þ
X
j2N c

X
k2AðjÞ

1

2
ukb̂bj;

where ui are scalars and b̂bi are unconstrained bilinear bases which can be constructed via the following four

shape functions:

s1 ¼ ð1� nÞð1� gÞ=4;
s2 ¼ ð1þ nÞð1� gÞ=4;
s3 ¼ ð1þ nÞð1þ gÞ=4;
s4 ¼ ð1� nÞð1þ gÞ=4;

defined on the reference element ŝs ¼ fðn; gÞ : jnj6 1; jgj6 1g. For every i 2 N a, let CðiÞ ¼ fj 2
N c j i 2 AðjÞg. We rewrite uh in the form

uh ¼
X
i2Na

uib̂bi þ
X
k2Na

X
j2CðkÞ

1

2
ukb̂bj ¼

X
i2Na

ui b̂bi

 
þ
X
j2CðiÞ

1

2
b̂bj

!
:

Thus, the functions

bi ¼ b̂bi þ
X
j2CðiÞ

1

2
b̂bj 8i 2 N a;

form constrained bilinear bases.

Let ðxi; yiÞ 2 �XX be a mesh point in T. For each i 2 N a, there exists a set V ðiÞ 
 N a of active degrees of

freedom such that Bhðbk; biÞ 6¼ 0 8k 2 V ðiÞ; k 6¼ i. Using the standard notation ui � uðxi; yiÞ as unknown
scalars, the approximation results in a system of linear equations
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niui �
X
k2V ðiÞ

nkuk ¼ f �
i ; ð52Þ

where ni ¼ Bhðbi; biÞ, nk ¼ �Bhðbk; biÞ, and f �
i ¼ 0 if ðxi; yiÞ 2 X and is associated with the boundary con-

dition if ðxi; yiÞ 2 oX.

Theorem 4.1. The matrix induced by (52) is diagonally dominant, i.e.,

ni P
X
k2V ðiÞ

nk;

nk P 0 8k 2 V ðiÞ:
ð53Þ

Furthermore, the strict inequality in (53) holds for at least one i 2 N a.

Proof. Without loss of generality, we construct the proof in the region fðx; yÞ : 06 x6 2; 06 y6 2g. �

4.1. Type 0: without subdivided elements

This is a 9-point stencil grid. For simplicity, we enumerate the unknown scalars u1; u2; . . . ; u9 from the

top left to the bottom right. Assume that all nodes are unconstrained. For i ¼ 5, we have

V ðiÞ ¼ f1; 2; 3; 4; 6; 7; 8; 9g and n5 ¼ Bðb5; b5Þ ¼
P4

i¼1
R 1
�1
R 1
�1 rsi � rsi dndg ¼ 8=3. Similarly, we have

nk ¼ 1=3 for all k 2 V ð5Þ. Hence (52) reads as

ð8=3Þu5 � ð1=3Þu1 � ð1=3Þu2 � ð1=3Þu3 � ð1=3Þu4 � ð1=3Þu6 � ð1=3Þu7 � ð1=3Þu8 � ð1=3Þu9 ¼ 0;

which obviously satisfies (53). Suppose that exactly one node is constrained, say node 8. Then

V ð5Þ ¼ f1; 2; 3; 4; 6; 7; 9g, Að8Þ ¼ f7; 9g, and

�n7 ¼ Bhðb5; b7Þ ¼ Bh

�
b̂b5; b̂b7 þ

1

2
b̂b8
	

¼
Z 1

�1

Z 1

�1
rs1 � rs3 dndg þ 1

2

Z 1

�1

Z 1

�1
rs2 � rs3 dndg

�
þ
Z 1

�1

Z 1

�1
rs1 � rs4 dndg

�
¼ ð�1=6Þ þ ð1=2Þð�1=6� 1=6Þ ¼ �1=2:

Other n0
ks are computed in a similarly way. Hence (52) reads as

ð8=3Þu5 � ð1=3Þu1 � ð1=3Þu2 � ð1=3Þu3 � ð1=3Þu4 � ð1=3Þu6 � ð1=2Þu7 � ð1=2Þu9 ¼ 0;

which again satisfies (53). If V ð5Þ ¼ f1; 2; 3; 6; 7; 9g, i.e., nodes 8 and 4 are constrained, then we have

ð8=3Þu5 � ð1=2Þu1 � ð1=3Þu2 � ð1=3Þu3 � ð1=3Þu6 � ð2=3Þu7 � ð1=2Þu9 ¼ 0:

All other cases with different constrained nodes can be computed similarly and (53) holds for this type of

finite elements.

4.2. Type 1: with one subdivided element

For a typical case of this type of partition, we refer to Fig. 1. Other cases can be shown in a similar way.

All nodes are enumerated as that shown in the figure. Note that the coordinates of node 10 is ð1:5; 0:5Þ, 11 is
ð1:5; 1Þ, and 12 is ð1; 0:5Þ, etc. Nodes 11 and 12 are constrained. Consider the case V ð5Þ ¼ f1; 2; 3;
4; 6; 7; 8; 10; 13; 14g, Að11Þ ¼ f5; 6g, Að12Þ ¼ f5; 8g;Cð5Þ ¼ f11; 12g. We have



Fig. 1. A 1-irregular mesh with one subdivided element.
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b5 ¼ b̂b5 þ 1
2
b̂b11 þ 1

2
b̂b12;

b8 ¼ b̂b8 þ 1
2
b̂b12;

b6 ¼ b̂b6 þ 1
2
b̂b11;

where

b̂b5 ¼

ð2� xÞð2� yÞ if 16 x6 2; 16 y6 2;
xð2� yÞ if 06 x6 1; 16 y6 2;
xy if 06 x6 1; 06 y6 1;
4ð1:5� xÞðy � 0:5Þ if 16 x6 1:5; 0:56 y6 1;

8>><
>>:
b̂b11 ¼
4ðx� 1Þðy � 0:5Þ if 16 x6 1:5; 0:56 y6 1;
4ð2� xÞðy � 0:5Þ if 1:56 x6 2; 0:56 y6 1;

�

b̂b12 ¼
4ð1:5� xÞð1� yÞ if 16 x6 1:5; 0:56 y6 1;
4ð1:5� xÞy if 16 x6 1:5; 06 y6 0:5:

�

Other basis functions can be constructed analogously. Hence, for example,

n5 ¼
Z 2

0

Z 2

0

rb5 � rb5 dndg

¼
Z 2

0

Z 2

0

rb̂b5 � rb̂b5 dndg þ 1

2

X
j2Cð5Þ

Z 2

0

Z 2

0

rb̂b5 � rb̂bj dndg þ 1

2

X
j2Cð5Þ

Z 2

0

Z 2

0

rb̂bj � rb̂b5 dndg

þ 1

4

X
j2Cð5Þ

Z 2

0

Z 2

0

rb̂bj � rb̂bj dndg þ 1

4

Z 2

0

Z 2

0

rb̂b11 � rb̂b12 dndg þ 1

4

Z 2

0

Z 2

0

rb̂b12 � rb̂b11 dndg

¼ ð8=3Þ þ ð1=2Þð�1=6� 1=6Þ þ ð1=2Þð�1=6� 1=6Þ þ ð1=4Þð4=3þ 4=3Þ þ ð1=4Þð�1=3Þ
þ ð1=4Þð�1=3Þ ¼ 17=6;

and we have

ð17=6Þu5 � ð1=3Þu1 � ð1=3Þu2 � ð1=3Þu3 � ð1=3Þu4 � ð1=12Þu6 � ð1=3Þu7 � ð1=12Þu8 � ð4=6Þu10
� ð1=6Þu13 � ð1=6Þu14 ¼ 0;
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for (52) which also satisfies (53). It can be shown similarly that (53) holds for various cases of AðkÞ and V ðiÞ
for this type of elements.

4.3. Type 2: with two subdivided elements

Again, for simplicity, we refer to two typical cases as shown in Figs. 2 and 3. The proof of (53) proceeds

analogously as that of Type 1. For instance, for the case of V ð5Þ ¼ f1; 2; 3; 10; 12; 14; 15; 17g, Að11Þ ¼
f5; 6g, Að16Þ ¼ f5; 4g, Cð5Þ ¼ f11; 16g in Fig. 2, we have

3u5 � ð1=3Þu1 � ð1=3Þu2 � ð1=3Þu3 � ð1=2Þu10 � ð2=3Þu12 � ð1=6Þu14 � ð1=2Þu15 � ð1=6Þu17 ¼ 0:

And, for V ð5Þ ¼ f2; 3; 4; 6; 7; 8; 10; 13; 14; 15; 16; 17g, Að18Þ ¼ f4; 5g, Að11Þ ¼ f5; 6g, Að12Þ ¼ f5; 8g,
Að19Þ ¼ f2; 5g, and Cð5Þ ¼ f11; 12; 18; 19g in Fig. 3, we have

3u5 � ð1=12Þu2 � ð1=3Þu3 � ð1=12Þu4 � ð1=12Þu6 � ð1=3Þu7 � ð1=12Þu8 � ð2=3Þu10 � ð1=6Þu13
� ð1=6Þu14 � ð2=3Þu15 � ð1=6Þu16 � ð1=6Þu17 ¼ 0:
Fig. 2. A 1-irregular mesh with two subdivided elements.

Fig. 3. A 1-irregular mesh with two subdivided elements.
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4.4. Type 3: with three subdivided elements

Finally, we prove for a typical case of this type of elements by referring to Fig. 4, i.e., V ð5Þ ¼
f1; 10; 11; 12; 15; 17; 19; 20g, Að16Þ ¼ f4; 5g, Að21Þ ¼ f2; 5g, Cð5Þ ¼ f16; 21g, which gives

3u5 � ð1=3Þu1 � ð1=3Þu10 � ð1=2Þu11 � ð1=2Þu12 � ð1=2Þu15 � ð1=6Þu17 � ð1=2Þu19 � ð1=6Þu20 ¼ 0:

The strict inequality in (53) holds for at least one i 2 N a since the boundary condition is not of pure

Neumann type. This completes the proof.

We are now concerned with the matrix properties of the FE approximation of the model system, namely,

Eqs. (19), (20), (21), (46), and (47) associated with their corresponding boundary conditions. In device

simulations, the coupled system of nonlinear PDEs is usually solved one by one in a manner of Gummel�s
decoupling. For each Gummel�s iteration and after the discretization, each one of these equations will result
in a system of nonlinear algebraic equations for which we only have to examine the property of the stiffness

matrix. Obviously, the matrix corresponding to the problem (19) is exactly that of (52) and hence Theorem

4.1 applies to this problem. However, for the rest of equations, it is well known that the Scharfetter–

Gummel discretization induces non-physical diffusion in the direction normal to drift velocity for multi-

dimensional problems, which has led to various modifications of the method [4,26,30,34,39,40]. In order to

obtain the same matrix property, we extend in particular the method proposed in [39] to the 1-irregular

mesh refinement scheme. It suffices to consider only the electron energy transport Eq. (46). Analysis for
other equations is completely analogous to what follows.

The FE approximation of the electron energy transport equation is to find gh
n 2 ShðTÞ such that

X
s2T

Z
s
Sh � rvh dxdy ¼

X
s2T

Z
s
Rnðgh

nÞvh dxdy 8vh 2 ShðTÞ; ð54Þ

where

Sh � SðunÞrgh
n; ð55Þ
SðunÞ � jn exp
5un

4VT

� �
: ð56Þ
Fig. 4. A 1-irregular mesh with three subdivided elements.
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For each i 2 N a with gi ¼ gh
nðxi; yiÞ, let lik denote the line segment from node i to node k, k 2 V ðiÞ. On lik,

we use the Scharfetter–Gummel scheme to approximate SðunÞ by

~SSikðunÞ ¼ jnjðk;iÞ
1

likj j

Z
lik

1

expð5un=4VTÞ
ds

� ��1
� jnjðk;iÞB

5ui � 5uk

4VT

� �
exp

5ui

4VT

� �
; ð57Þ

where jnjðk;iÞ ¼ ðjnðxk; ykÞ þ jnðxi; yiÞÞ=2 and BðtÞ ¼ t=ðet � 1Þ is the Bernoulli function for any real number

t. For each element s 2 T and taking vh ¼ bi, we haveZ
s
Sh � rbi dxdy ¼

X
k2V ðiÞ[fig

Z
s
SðunÞgkrbk � rbi dxdy

�
X
k2V ðiÞ

~SSikðunÞ
Z

s
ðgkrbk � rbi þ girbi � rbiÞdxdy

¼
X
k2V ðiÞ

~SSikðunÞ
Z

s
ðgkrbk � rbi � girbk � rbiÞdxdy ¼

X
k2V ðiÞ

nk
~SSikðunÞðgk � giÞ: ð58Þ

Summing over all elements, the discrete form of (46) can thus be written as

gigi �
X
k2V ðiÞ

gkgk ¼ �RnðgiÞ þ R�
i ; ð59Þ

for the ith equation or in a more compact matrix form

AU ¼ �RnðUÞ þ R�
nðUÞ ¼: �F ðUÞ; ð60Þ

where

gi ¼
X
k2V ðiÞ

gk; ð61Þ
gk ¼ nkdk; ð62Þ
dk ¼ jnjðk;iÞB
5ui � 5uk

4VT

� �
exp

5ui

4VT

� �
; ð63Þ
nk ¼ �Bhðbi; bkÞ; ð64Þ
U ¼ ðg1; . . . ; gN Þ; ð65Þ
RnðUÞ ¼ ðRnðg1Þ; . . . ;RnðgN ÞÞ; ð66Þ
R�
nðUÞ ¼ ðR�

nðg1Þ; . . . ;R�
nðgN ÞÞ: ð67Þ

Here, RnðgiÞ is defined by evaluating (54) at ðxi; yiÞ 2 X, and R�
i is associated with the boundary conditions

if ðxi; yiÞ 2 oX and R�
i ¼ 0 if ðxi; yiÞ 2 X. Note that, by the definition of the Bernoulli function and of the

heat conductivity coefficient, the factors dk in (63) are positive. We therefore conclude the following

result.
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Theorem 4.2. The matrix A in (60) is diagonally dominant, i.e.,

gi P
X
k2V ðiÞ

gk; ð68Þ
gk P 0 8k 2 V ðiÞ:

Furthermore, the strict inequality in (68) holds for at least one i 2 N a.

The diagonal dominance of the resulting matrices of the model problems provides not only stability of

numerical solutions (i.e., no non-physical oscillations) but also convergence of iterative procedures when

the special properties of the nonlinearity in these problems are taken into account. Moreover, the existence

and uniqueness of the solutions can also be guaranteed by means of the construction of lower and upper

solutions which are defined as follows:

Definition. A vector ~UU � ð~gg1; . . . ; ~ggN Þ 2 RN is called an upper solution of (60) if it satisfies the following

inequality:

gi~ggi �
X
k2V ðiÞ

gk~ggk P � Fið~ggiÞ ð69Þ

and ÛU � ðĝg1; . . . ; ĝgN Þ 2 RN is a lower solution if

giĝgi �
X
k2V ðiÞ

gkĝgk 6 � FiðĝgiÞ ð70Þ

for all i 2 N a.

It is obvious that every solution of (60) is an upper solution as well as a lower solution. We say that ÛU
and ~UU are ordered if ÛU 6 ~UU . Given any ordered lower and upper solutions ÛU and ~UU , we define

hÛU ; ~UUi � fU 2 RN ; ÛU 6U 6 ~UUg ð71Þ
hĝgi; ~ggii � fgi 2 R; ĝgi 6 gi 6 ~ggig: ð72Þ

By (7), (12), (42), and (48), we can always choose the non-negative scalars ci so that

ci � max
oRnðgiÞ
ogn

; gi 2 hĝgi; ~ggii
� �

ð73Þ

or in matrix form

K � diagðciÞ ð74Þ

for all i 2 N a. Then by adding the term cigi on both sides of (60) we obtain the equivalent system

gigi þ cigi ¼
X
k2V ðiÞ

gkgk þ cigi � FiðgiÞ: ð75Þ

Let �UU ð0Þ ¼ ~UU be an initial iterate. We construct a sequence f �UU ðmÞg by solving the linear system

gi�gg
ðmþ1Þ
i þ ci�gg

ðmþ1Þ
i ¼

X
k2V ðiÞ

gk�gg
ðmÞ
k þ ci�gg

ðmÞ
i � Fi �ggðmÞ

i

� 	
ð76Þ
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for m ¼ 0; 1; 2; . . . and i 2 N a. Similarly, by using U ð0Þ ¼ ÛU as another initial iterate, we obtain a sequence

fU ðmÞg from the linear system

gig
ðmþ1Þ
i

þ cig
ðmþ1Þ
i

¼
X
k2V ðiÞ

gkg
ðmÞ
k

þ cig
ðmÞ
i

� Fi gðmÞ
i

� 	
ð77Þ

for m ¼ 0; 1; 2; . . . and i 2 N a. We refer to f �UU ðmÞg and fU ðmÞg as the maximal and minimal sequences. The
following results are direct consequences of Theorem 4.2 for which a proof can be found, for instance, in

[27]. These results insure that the iterative method (76) or (77) is monotonically, globally, and uniquely

convergent.

Theorem 4.3. Let ~UU , ÛU be a pair of ordered upper and lower solutions of (60). Then the sequences f �UU ðmÞg and
fU ðmÞg generated by solving (76) and (77) with �UU ð0Þ ¼ ~UU and U ð0Þ ¼ ÛU converge monotonically to the solutions
�UU and U of (76), respectively. That is

ÛU 6U ðmÞ
6U ðmþ1Þ

6U 6 �UU 6 �UU ðmþ1Þ
6 �UU ðmÞ

6 ~UU ; m ¼ 1; 2; . . . : ð78Þ

Moreover, �UU ¼ U is the unique solution of (60).

Remark 4.1. A great deal of numerical methods have been developed for energy transport models, see, e.g.,
[1,3,5,10,12,13,15,17,18,25,29,40]. Mixed FEM is one of the most frequently used methods to approximate

the semiconductor equations [5,6,10,13,25], whereas our approximation is based on the standard FEM

since only one linear FE space is used for all state variables. As shown in [6], the major difference between

the standard FEM and mixed FEM is that the use of harmonic average in mixed FEM for the exponential

function can extend the effective features of the Scharfetter–Gummel scheme to the two-dimensional

problems whereas in the standard method one can only have one-dimensional harmonic average as that of

(57). Nonetheless, our numerical experience suggests that sufficiently fine (adaptive) mesh can alleviate this

drawback. Another frequently used method is the finite volume method (FVM) or the box method
[4,12,14]. In view of the harmonic average (a simplification for the integral in (58)), the present FEM is

essentially equivalent to FVM as proved in [4] and as numerically demonstrated in [20].

Remark 4.2. It is well known that the Slotboom variables (22), (23), (42), and (43) can lead to catastrophic
roundoff errors if these variables are not properly scaled during computations [4]. To improve matrix con-

ditioning, we can divide (59) by jnjðk;iÞ expð5ui=4VTÞ in a node-by-node basis. The corresponding stiffness

matrix is anM-matrix and Theorem 4.2 still holds with this scaling. Another way to improve the conditioning

is to perform (at the discrete level) a change of the variable gn back to its original variable (42) as suggested in

[6]. The resulting stiffness matrixmay not be anM-matrix. However, themixedmethod can be used to recover

the M-matrix property and furthermore to have the current conservation property [6]. However, the im-

plementation of this method is more complicated than that of (59) since the discrete system is enlarged by this

method and the matrix reduction by means of static condensation requires an element-wise inversion of the
block-diagonal matrix associated with the auxiliary variable. Moreover, a suitable numerical integration

formula for the local and global matrices and for the right-hand side vector is required (see [6] for more

details). The monotone parameters (73) will also be more involved with this method.
5. An adaptive algorithm

To illustrate the implementation of the iterative method (77), we briefly summarize our adaptive
monotone-Gummel algorithm as follows. Here we use the notation l as Gummel�s (outer) iteration index

and m as the monotone (inner) iteration index.
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Step 1. Initial mesh: Create a coarse and structured mesh for which the number of nodes can be chosen as

small as possible.

Step 2. Preprocessing: Since the initial mesh is usually very coarse, a sufficiently fine mesh created by solv-

ing the Poisson problem (19) with low biasing conditions proves to be an essential step for more
effective refinement and faster convergence in the subsequent computations. With this step, a finer

mesh can be generated to capture intrinsic irregularities caused by the junction layers of the doping

profile and by the applied voltages. The problem is solved only for a few levels of refinement.

Furthermore, the mesh near the interface between the oxide and the semiconductor will be refined

several times by the refinement scheme as that in Step 6. We now have a non-uniform mesh

with a better resolution in the vicinity of the interface and the junction.

Step 3. Gummel and monotone iterations on the drift–diffusion model:

Step 3.1. Set l ¼ 0 and do the following sub-steps:

Step 3.1.1. Set m :¼ 0 and the initial guess /ðmÞ

j ¼ ~//j or /̂/j 8j, where ~//j and /̂/j are constant values

for all ðxj; yjÞ 2 �XXh that can be easily verified to be an upper and lower solution of /,
respectively.

Step 3.1.2. Set uð0Þ and vð0Þ by the charge neutrality condition.

Step 3.1.3. Compute /ðmþ1Þ
j by solving the discrete potential system

nj/
ðmþ1Þ
j þ cj /ð Þ/ðmþ1Þ

j ¼
P

k2V ðjÞ nk/
ðmÞ
k

�F /ðmÞ
j ; uðlÞj ; vðlÞj

� 	
þ cjð/Þ/ðmÞ

j 8ðxj; yjÞ 2 Xh;

/ðmþ1Þ
j ¼ VO þ Vb 8ðxj; yjÞ 2 oXh

D;
o/ðmþ1Þ

j

on ¼ 0 8ðxj; yjÞ 2 oXh
N;

8>>>>><
>>>>>:

ð79Þ

where

cjð/Þ ¼ max
oF ð/jÞ
o/

; /̂/j

�
6/j 6

~//j

�
; ð80Þ
nk ¼ �Bhðbj; bkÞ:

Step 3.1.4. Set /ðmÞ
j :¼ /ðmþ1Þ

j 8j and m :¼ mþ 1. Go to Step 3.1.3 until the stopping criteria of the

inner iteration are satisfied.

Step 3.1.5. Set /ðlþ1Þ
j :¼ /ðmþ1Þ

j 8j.
Step 3.1.6. Set the initial guess uðmÞj ¼ ~uuj or ûuj 8j where ~uuj and ûuj are constant values for all

ðxj; yjÞ 2 �XXh that can be easily verified to be an upper and lower solution of u, respectively.
Step 3.1.7. Compute uðmþ1Þj by solving the discrete electron system

fju
ðmþ1Þ
j þ cjðuÞu

ðmþ1Þ
j ¼

PðmÞ
k2V ðjÞ fku

ðmÞ
k

�R /ðlþ1Þ
j ; uðmÞj ; vðlÞj

� 	
þ cjðuÞu

ðmÞ
j 8ðxj; yjÞ 2 Xh;

uðmþ1Þj ¼ exp �VO
VT

� 	
8ðxj; yjÞ 2 oXh

D;

ouðmþ1Þj

on ¼ 0 8ðxj; yjÞ 2 oXh
N;

8>>>>>><
>>>>>>:

ð81Þ

where

cjðuÞ ¼ max
oRðujÞ
ou

; ûuj

�
6 uj 6 ~uuj

�
; ð82Þ
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fj ¼
X
k2V ðjÞ

fk; fk ¼ nkdk;
Dnjðk;jÞ ¼ ðDnðxk; ykÞ þ Dnðxj; yjÞÞ=2;
dk ¼ Dnjðk;jÞniB
/ðlþ1Þ

j � /ðlþ1Þ
k

VT

 !
exp

/ðlþ1Þ
j

VT

 !
: ð83Þ

Step 3.1.8. Set uðmÞj :¼ uðmþ1Þj 8j and m :¼ mþ 1.Go to Step 3.1.7 until the stopping criteria of the

inner iteration are satisfied.

Step 3.1.9. Set uðlþ1Þj :¼ uðmþ1Þj 8j.
Step 3.1.10. The discrete hole continuity system is solved analogously as that in Step 3.1.7 for vðlþ1Þj

Step 3.1.11. Set l :¼ lþ 1.

Step 3.2. For /ðlþ1Þ
j , do the following sub-steps:

Step 3.2.1. Set m :¼ 0 and /ðmÞ
j :¼ /ðlÞ

j 8j.
Step 3.2.2. Compute /ðmþ1Þ

j by solving the discrete potential system (79).

Step 3.2.3. Set /ðmÞ
j :¼ /ðmþ1Þ

j 8j and m :¼ mþ 1.Go to Step 3.2.2 until the stopping criteria of the

inner iteration are satisfied.

Step 3.2.4. Set /ðlþ1Þ
j :¼ /ðmþ1Þ

j 8j.
Step 3.3. For uðlþ1Þj , do the following sub-steps:

Step 3.3.1. Set m :¼ 0 and uðmÞj :¼ uðlÞj 8j.
Step 3.3.2. Compute uðmþ1Þj by solving the discrete electron system (81).

Step 3.3.3. Set uðmÞj :¼ uðmþ1Þj 8j and m :¼ mþ 1.Go to Step 3.3.2 until the stopping criteria of the

inner iteration are satisfied.
Step 3.3.4. Set uðlþ1Þj :¼ uðmþ1Þj 8j.

Step 3.4. For vðlþ1Þj , the discrete hole continuity system is solved analogously as that in Step 3.3.Set

l :¼ lþ 1 and go to Step 3.2 until the stopping criteria of the outer iteration are satisfied.

Step 4. Monotone iteration on electron energy transport model:

Step 4.1. Set m :¼ 0.

Step 4.2. Set the initial guess gð0Þj ¼ ~ggj or ĝgj 8j where ~ggj and ĝgj are constant values for allðxj; yjÞ 2 �XXh that

can be easily verified to be an upper and lower solution of gn, respectively.

Step 4.3. Compute gðmþ1Þ
j by solving the discrete electron system

gjg
ðmþ1Þ
j þ cj gð Þgðmþ1Þj ¼

PðmÞ
k2V ðjÞ gkg

ðmÞ
k

�Rn gðmÞ
j

� 	
þ cjðgÞg

ðmÞ
j 8ðxj; yjÞ 2 Xh;

gðmþ1Þj ¼ 300= exp 5VO
4VT

� 	
8ðxj; yjÞ 2 oXh

D;

ogðmþ1Þj

on ¼ 0 8ðxj; yjÞ 2 oXh
N; a

8>>>>>><
>>>>>>:

ð84Þ

where

cj gð Þ ¼ max
oRnðgjÞ

og
; ĝgj

�
6 gj 6 ~ggj

�
; ð85Þ
gj ¼
X
k2V ðjÞ

gk; gk ¼ nkdk;
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jnjðk;jÞ ¼ jnðxk; ykÞ
�

þ jnðxj; yjÞ
�
=2;
uk ¼ � ln uðlÞk

� 	
VT;
dk ¼ jnjðk;jÞB
5uj � 5uk

4VT

� �
exp

5uj

4VT

� �
: ð86Þ

Step 4.4. Set gðmÞ
j :¼ gðmþ1Þ

j 8j and m :¼ mþ 1. Go to Step 4.3 until the stopping criteria of the inner it-

eration are satisfied.

Step 5. Error estimation: For each element, we use the variation of the gradient of the computed potential,

concentration, or temperature compared with that of all other elements as an local error indicator.
Gradients are calculated with respect to every two nodes in the element, from which the largest one

is chosen to be the error indicator. Error indicators are obtained on an element-by-element basis

according to the hierarchical tree structure of the OOP data base. A set of criteria on such as global

error estimators of approximated solutions, inner iteration, and outer iteration, etc. will be verified.

If none of the stopping criteria is satisfied, the adaptive process will continue from Step 6, otherwise

it will go to Step 7 for postprocessing the computed solutions.

Step 6. Refinement: Each one of the elements that are associated with error indicators greater than a preset

error tolerance is divided into four subelements according the rules of the 1-irregular mesh refine-
ment scheme (see, e.g. [22]). We then move on to Step 3.

Step 7. Postprocessing: All computed solutions are then postprocessed for further analysis of physical phe-

nomena.

Note that the solution procedure in Step 3 consists of an outer loop associated with Gummel�s iteration
solving (19)–(21) consecutively and an inner loop associated with the monotone iteration for each nonlinear

equation. The energy Eq. (46) is then solved by monotone iteration only. Moreover, as shown in the it-

erations of (79), (81), and (84), the assembly of global stiffness matrices of the resulting approximation is

not required, that is, the solution of discretized nonlinear systems is performed on a node-by-node (regular
node) basis. It is also readily seen that the implementation of these iterations is very simple since the

monotone parameters (80), (82), and (85) can be easily evaluated. In general, they are evaluated by using

the most recent available solution at the current grid point. For this case, the corresponding matrix (74) is

simply the diagonal part of the Jacobian matrix used in Newton�s method.
6. Numerical examples

To demonstrate the effectiveness and accuracy of the numerical algorithms presented in the previous

sections, several numerical studies have been made for sample diode and MOSFET device structures. First

of all, a benchmark model, namely, an abrupt nþ � n� nþ silicon diode is used to verify our methods and

formulation with the results reported in literature. Numerical experiments are performed on a 0.6-lm
silicon diode at 300 K with nþ ¼ 5:0� 1017 cm�3 and n ¼ 2:0� 1015 cm�3. The length of the n-region is

approximately 0:4lm. The boundary conditions are given as follows:

1. At the position x ¼ 0 lm: / ¼ Vb, u ¼ 1:0, and gn ¼ 300.

2. At the position x ¼ 0:6 lm: / ¼ VO þ Vb, u ¼ expð�VO=VTÞ, and gn ¼ 300= expð5VO=4VTÞ.
The steady-state results for this problem are shown in Figs. 5–7 where the applied voltage VO is taken as

1.5 V (the solid line) or 2.0 V (the dashed line). These results agree very well with that previously reported in

the literature [1,15,28] and thus show the accuracy of the proposed self-adjoint formulation. This motivates

us to further use the formulation in simulations for more complex device structures.



Fig. 5. Electrostatic potential.

Fig. 6. Electron concentration.
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The next model that we have verified is a typical 2D nþ � n� nþ deep-submicron diode illustrated in

Fig. 8 [1]. The bold lines indicate the contact positions. Contacts A–B and A–F are terminated at a distance

of 0:1 lm from the top left corner. In order to simulate a realistic device, contacts are not extended to the

full nþ region near the top left corner as shown in Fig. 8. The channel length L is 0:18 lm. The doping
profile in the highly doped regions is 5:0� 1017 cm�3 and in the lowly doped regions is 2:0� 1015 cm�3 , i.e.,

5:0� 1017 cm�3 for 0:06 x6 0:4 lm and 06 y6 0:1 lm,
5:0� 1017 cm�3 for 0:36 x6 0:4 lm and 06 y6 0:4 lm,
5:0� 1017 cm�3 for 0:06 x6 0:12 lm and 0:286 y6 0:4 lm, and
2:0� 1015 cm�3 elsewhere.



Fig. 7. Temperature.

Fig. 8. A 0:4 lm� 0:4 lm nþ � n� nþ silicon device. Contacts are denoted by bold lines.
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The associated boundary conditions are as follows:

1. On the contacts A–B and A–F: / ¼ Vb, u ¼ 1:0, and gn ¼ 300.

2. On the contacts D–C and D–E: / ¼ 1:0þ Vb, u ¼ expð�1:0=VTÞ, and gn ¼ 300= expð5=4VTÞ.
3. On the boundaries E–F and B–C: Neumann boundary conditions for /, u, and gn.
The applied voltage is 1:0 V. The location of junction layers is evidently shown in the final adaptive mesh

in Fig. 9. The corresponding potential, electron concentration, and temperature distribution are shown in

Figs. 10–12, respectively.

Finally, numerical results were also obtained for an n-MOSFET device with the channel length of

0:34 lm and with the gate oxide thickness of 7 nm. Fig. 13 illustrates the geometry of the MOSFET device

structure. The boundary conditions are as follows:



Fig. 9. The final adaptive mesh for a diode.

Fig. 10. Electrostatic potential.
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1. On B–C: / ¼ Vb, u ¼ 1:0, and gn ¼ 300.

2. On I–J: / ¼ VGS þ Vb.
3. On D–E: / ¼ VDS þ Vb, u ¼ expð�VDS=VTÞ, and gn ¼ 300= expð5VDS=4VTÞ.
4. On A–F: / ¼ VBS þ Vb, u ¼ expð�VBS=VTÞ, and gn ¼ 300= expð5VBS=4VTÞ.



Fig. 11. Electron concentration.

Fig. 12. Electron temperature.
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5. On A–B and E–F: Neumann boundary conditions for /, u, and gn.

6. On C–D: Interface boundary condition for /. Neumann boundary conditions for u and gn.

Note that the general formulation of the model in Section 2 is stated only in the silicon region, i.e., the

solution domain X in (79) represents this region only. For MOSFET devices, we need to extend the solution

domain to the oxide region to which Laplace�s equation for the potential is applied. More precisely, the

solution step in (79) is replaced by



Fig. 13. Geometry of an n-MOSFET device.
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nj/
ðmþ1Þ
j þ cj /ð Þ/ðmþ1Þ

j ¼
P

k2V ðjÞ nk/
ðmÞ
k � Fjð/ mð Þ

j ; uðgÞj ; vðgÞj Þ þ cj /ð Þ/ðmÞ
j 8ðxj; yjÞ 2 Xh

/ðmþ1Þ
j ¼ VO þ Vb 8ðxj; yjÞ 2 oXh

D

o/ðmþ1Þ
j

om ¼ 0 8ðxj; yjÞ 2 oXh
N

nj/
ðmþ1Þ
j ¼

P
k2V ðjÞ nk/

ðmÞ
k 8ðxj; yjÞ 2 Xh

O

/ðmþ1Þ
j ¼ VGS þ Vb 8ðxj; yjÞ 2 CIJ

o/ðmþ1Þ
j

om ¼ 0 8ðxj; yjÞ 2 CCI [ CDJ

esoy/
ðmþ1Þ
� ¼ edoy/

ðmþ1Þ
þ 8ðxj; yjÞ 2 oCCD;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð87Þ

where XO denotes the gate oxide region, es and ed are the permittivity constants of the silicon and the oxide,
and the + and ) signs refer to as the limits from the oxide and the silicon regions, respectively, to the

interface.

The device has an elliptical 1020 cm�3 Gaussian doping profiles in the source and drain regions and

1016 cm�3 in the p-substrate region as shown in Fig. 14. The shallow implantation is needed to obtain a

�normal-off� device with positive threshold voltage and the deep implantation is necessary to avoid

punchthrough. The junction depth is 0:2 lm and the lateral diffusion under gate is 0:08 lm. With

VBS ¼ 0 V, VDS ¼ 1:5 V, and VGS ¼ 1:0 V, Figs. 15–19 present the final adaptive mesh, electrostatic po-

tential, electron concentration, electron temperature distribution, and electron current density, respectively.
Here, the current density is illustrated in the longitudinal direction since the transversal components are

comparatively very small. Fig. 19 clearly shows that electrons are moving very close to the interface and jam

to the intersection of the oxide, silicon, and drain contact.

We make a remark on the convergence and uniqueness of the iterative method that has been verified

by using the upper ~uu ¼ 1 and the lower ûu ¼ 1:0� 10�18 solutions as initial guesses for the electron

continuity equation with the voltage VDS ¼ 1. The lower solution is readily obtained by the charge

neutrality condition expð�VDS=VTÞ ’ 1:7� 10�17. As mentioned above, the dynamic range of the



Fig. 14. Doping concentration.

Fig. 15. The final adaptive mesh for an n-MOSFET.
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numerical values of u and v is very large in computations. The worst case of the numerics for the

Slotboom variables u and v that we have experienced during the course of the development of our code is

about of order 10100 on our computing systems (Unix on DEC workstations and Linux on Pentium III)

with the machine number of order 10300. The range of applied voltages that have been tested with our

code is )10 V (the reverse bias) to 10 V (the forward bias) for a diode and 0–5 V (the drain bias) and 0–4



Fig. 16. Electrostatic potential.

Fig. 17. Electron concentration.
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V (the gate bias) for a MOSFET. Although the Slotboom variables are limited for larger bias conditions

because of the exponential of the Slotboom variables, applied voltages are much less than 5 V in sub-

micron electron devices with the gate oxide thickness less than 22 nm [38]. This may suggest that the

Slotboom formulation for classical device properties may be revived in future simulations as the mini-

aturization of devices continues.



Fig. 18. Electron temperature.

Fig. 19. Electron current density.
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7. Conclusion

A self-adjoint model of the energy transport model is proposed in this paper. An iterative method is

then developed for the solution of the resulting nonlinear algebraic equations of the model from adaptive
finite element approximation. This method exhibits many appealing features for device simulations as

follows.
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7.1. Global convergence

The self-adjointness implies the diagonal dominance of the resulting matrices, which provides not only

stability of numerical solutions but also convergence of iterative procedures. The method is shown to

generate convergent and unique solutions with simple initial iterates (e.g., the charge neutrality condition).

Moreover, a good approximation of the electrostatic potential by the iterative and adaptive methods can

lead to the convergence of the solution for the Slotboom variables. The decoupling (Gummel) approach is

hence shown to work well with the present iterative method for submicron devices.

7.2. Efficiency

The method is highly parallel due to its Jacobi nature. The conventional approach to obtain an I–V

curve is by some continuation procedure from lower to higher voltages due to the local property of

Newton�s method. This procedure can be very costly in terms of computing time and human work load.
The present method can be used to simultaneously (in parallel) simulate device I–V points with independent

initial guesses due to the global convergence. The parallelism is thus two folds: the method itself and the

I–V computations. This greatly reduces the overall working time for device simulation practitioners.

7.3. Easy implementation

This is a constructive method that essentially depends only on one crucial element—the monotone pa-

rameter. It can be easily implemented on a node-by-node basis. No global stiffness matrix is necessary. The

treatment of the monotone parameter matrix is much more simpler than of the standard Jacobian matrix.

However, it is unknown to us that the self-adjoint formulation for carrier temperatures represents any

interesting properties in semiconductor physics. Our numerical results nevertheless show that the carrier

temperature can be well approximated with this formulation.
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